Enhancing the bioactivity of a calcium phosphate glass-ceramic with controlled heat treatment

Authors

Abstract:

In this paper synthesis and characterization of a bioactive calcium phosphate glass-ceramic is presented, synthesized using a facile method. The glass-ceramic samples are synthesized with heat treating the parent glass at appropriate temperatures, where different calcium phosphate crystalline phases are grown in the parent glass samples during the heat treatment. The amounts of elements and oxides in the parent glass are determined by X-ray fluorescence analysis. Using differential scanning calorimetry method glass transition temperature of the parent glass, and the temperature range for heat treatments are determined. Several calcium phosphate crystalline phases are identified in the glass-ceramic samples. With the increase of heat treatment temperature from 540 ℃ to 560 ℃, β-Ca3(PO4)2 and β-Ca2P2O7 crystalline phases become the dominant crystalline phases among the other crystalline phases in the glass-ceramic samples. Bioactivity of the glass-ceramic samples are investigated by immersing the samples in Ringer's solution for 7, 21 and 28 days. By analyzing X-ray diffraction patterns, Fourier transform infrared spectra, and scanning electron microscopy images of the samples immersed in Ringer's solution, the formation of hydroxyapatite on the samples confirmed. The results show that the samples with β-Ca3(PO4)2 and β-Ca2P2O7 crystalline phases are more bioactive than the others.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Calcium phosphate glasses: silanation process and effect on the bioactivity behavior of glass-PMMA composites.

This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glass- poly(methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2 O5 -11Na2 O (BV11) and 44.5CaO-44.5P2 O5 -6Na2 O-5TiO2 (G5) were synthesized and treated with silane coupling agent. Th...

full text

Improving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating

Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...

full text

Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis.

BACKGROUND We evaluated the fusion efficacy and clinical outcomes of a cage containing a biphasic calcium phosphate ceramic (Triosite) in treating cervical spondylosis. METHODS We randomly divided 100 patients with cervical spondylosis undergoing anterior discectomy with interbody polyetheretherketone (PEEK) fusion into 2 groups in the past 2 years: group A (n = 50), PEEK cage containing a bi...

full text

Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates

Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive denta...

full text

The stability mechanisms of an injectable calcium phosphate ceramic suspension.

Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the susp...

full text

Treatment of osteomyelitis with antibiotic-soaked porous glass ceramic.

We have developed a new drug delivery system using porous apatite-wollastonite glass ceramic (A-W GC) to treat osteomyelitis. A-W GC (porosity, 70% and 20% to 30%), or porous hydroxyapatite (HA) blocks (porosity 35% to 48%) used as controls, were soaked in mixtures of two antibiotics, isepamicin sulphate (ISP) and cefmetazole (CMZ) under high vacuum. We evaluated the release concentrations of t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  31- 37

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023